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A method to make an ab initio calculation of the free energy of small drops 
of liquid metal is presented. The model chosen involves the replacing of the 
positive ion cores by an equivalent continuous spherical distribution of 
charge. The Thomas-Fermi potential is calculated as a starting point for a 
Hartree-Fock self-consistent field calculation. The results of the Thomas- 
Fermi calculation are reported as an example of the preliminary calculations. 
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1. I N T R O D U C T I O N  

In  o rder  to s tudy the qual i ta t ive  effects o f  curvature  on the t he rmodyna mic  
proper t ies  of  small  d rops  of  l iquid metal ,  it  is necessary to be able to es t imate  
the free energies of  these drops.  The mode l  we use, c rude  bu t  simple, involves 
replac ing the posi t ive ion cores in the meta l  by  an equivalent  con t inuous  
spherical  d i s t r ibu t ion  o f  charge.  The en t ropy  S(D) associa ted with the distr i-  
bu t ion  D can be est imated.  Electrons  are  assumed to dis t r ibute  themselves 
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in their ground state, at energy E(D). The electrons contribute no entropy 
since they are in their ground state. The partition function of the system can 
be approximated as 

(2rrmk T)3~/2 S" e-S(D) %-~W) :~r Q = ~ ~ (1) 
D 

where T is the temperature, k is Boltzmann's constant, m is the mass of an 
ion core, h is Planck's constant, and N is the number of ion cores. The free 
energy A can then be calculated from 

A = - - kT  In Q (2) 

Clearly the central problem is the evaluation of E(D). We are in the 
process of calculating this energy, using self-consistent field methods. As a 
starting point for these calculations it is useful to solve the Thomas-Fermi 
statistical potential for this system, a) Consequently, we have undertaken 
the solution of the Thomas-Fermi equation for the above model. Since 
the solution was not trivial, and because it may have value in itself, we have 
decided to publish the results of this part of our investigation as a separate 
note. 

2. M E T H O D  

To solve the problem, we define a continuous spherical ion core distri- 
bution (equivalent to N cores) out to a spherical boundary of radius R~. The 
volume of the sphere is taken as Nv, where v is the atomic volume of the 
metal. The total charge of the positive ion distribution is Nz, where z is the 
number of free electrons assigned to the metal. The Nz electrons can pass 
freely through the boundary surface. We define the positive charge density 
a s  p+(r). 

The Thomas-Fermi model relates the electron charge density and electro- 
static potential as follows: 

p_(r) = -- (8~-e/3h z) [2me V(r)]z/z (3) 

where p_(r) is the electron charge density, V(r) is the electrostatic potential, 
h is Planck's constant, e is the charge of an electron, and m is the mass of an 
electron. The potential energy is 

U(r) = --eV(r) (4) 

By solving Poisson's equation 

w v ( r )  = - 4 ~  e(r ) / ,o (5) 
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V(r) can be found  by standard numerical integration techniques for  any 
given p+(r). Here P(r) is defined as 

P(r) ~- p+(r) q- p_(r) (6) 

Equat ion  (4) is solved subject to the following boundary  conditions:  

dVdr)/dr = 0 at r = 0 (7a) 

dG(r)/dr = 0 at r = c~ (7b) 

V 2 ( r ) = 0  at r =  oe (7c) 

Vdr) = V2(r) at r = R,  (7d) 

dVl(r)/dr = dV2(r)/dr at r ---- R~ (7e) 

where Vl(r) refers to the potential inside R8 and Vdr) to that  outside. 
The method used to obtain the potential is the following. Equat ion  (3) 

is solved using a finite difference method.  A guess is made for  the value V0, 
the potential at r = 0. Then the integration is carried toward r = oo. V 0 
is adjusted until the integration is well behaved out  to r = or. Usually r = oo 
was approximated by r = 10Rs. A check on the solution was made by 
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Fig. 1. Thomas-Fermi electrostatic potentials for spheres of constant p+ but of differing 
radii. Curve 2 represents a sphere of volume 10G where v is the atomic volume of Hg. 
Curve 1 is for the case where R~(1) = �89 and curve 3 is for the case where R,(3) = 
2R~(2). Each sphere contains the equivalent number  of positive charges. V is in atomic 
units and r is in units of Bohr radii. 
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solving for p_(r) and integrating over all space. This integral should exactly 
balance the total positive charge. The choice o f  the starting potential was 
found  to be extremely critical. On the order o f  20 iterations were required, 
with Vo being varied only in the fifth decimal place, in order to obtain a 
stable and self-consistent function. 

3. R E S U L T S  A N D  D I S C U S S I O N  

Results obtained for  a cluster of  ten metal a toms each the size of  a Hg  
a tom are reported as an example. In  Fig. 1 the electrostatic potential for  
distributions of  three differing radii R~, but  containing the same number  o f  
atoms, is presented. The positive charge densi typ+(r)  was assigned a constant  
value equal to the total positive charge divided by the volume inside R~. 
Values o f  r are given in units o f  Bohr  radii. The potential  is given in a tomic 
units, where e - -  1, m~ = 1, and h = 27r. z is taken as equal to one. 

Figure 2 gives an indication of  the effect of  a nonconstantp+(r) .  For  this 
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Fig. 2. Thomas-Fermi electrostatic potentials for spheres of constant 
R8 but of differing p+(r). Here p+ is a linear function of r, where 
pmin ~ xpmax ,  pmJn is t he  value of p+ at r = 0, and pmax is the value 
of p+ at r = R~. The volume of the sphere is 10v, where v is the atomic 
volume of Hg. V is in atomic units and ra is in reduced units of r/R,. 
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calculation p+ increases linearly with r from a Pmin at the center to Pmax at Rs.  
The total positive charge is, however, kept the same; Pm*n is equal to Xpmax , 
where x is equal to or tess than one but always greater than zero. Units of r 
are given in terms of reduced radii, where R -~ r/R~. 

The potential behaves as expected. For the case where there is more 
positive charge near R~ the electron density is seen to be greater there also. 
However, it should be noted that V(r) is not very sensitive to the choice 
ofp+(r). In Fig. 2 it is seen that a tenfold variation in x causes only about a 
30}/0 change in the value of V 0 . Also, beyond R~, where the shape of the 
potential is approximately Coulombic in nature, there is very little effect. 
This result is the same as that predicted by classical electrostatic theory. 
Finally, it can be noted that as the positive charge density is decreased by 
increasing Rs the potential energy decreases, and the electronic charge density 
becomes more diffuse. 

The solution to this model suggests that a simple choice of the functional 
form of p+(r) can be made without sacrificing much accuracy in the deter- 
mination of the starting potential energy for a Hartree-Fock calculation. 
Either a simple shell of positive charge lying on R, or a constant positive 
charge density model could be chosen. The choice of the value Rs is seen to 
be the more important consideration. 
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